David Maps and Hausdorff Dimension

نویسنده

  • Saeed Zakeri
چکیده

David maps are generalizations of classical planar quasiconformal maps for which the dilatation is allowed to tend to infinity in a controlled fashion. In this note we examine how these maps distort Hausdorff dimension. We show: – Given α and β in [0, 2] , there exists a David map φ: C → C and a compact set Λ such that dimH Λ = α and dimH φ(Λ) = β . – There exists a David map φ: C → C such that the Jordan curve Γ = φ(S) satisfies dimH Γ = 2. One should contrast the first statement with the fact that quasiconformal maps preserve sets of Hausdorff dimension 0 and 2 . The second statement provides an example of a Jordan curve with Hausdorff dimension 2 which is (quasi)conformally removable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE HAUSDORFF DIMENSION OF THE BOUNDARY OF THE IMMEDIATE BASIN OF INFINITY OF McMULLEN MAPS

In this paper, we give a formula of the Hausdorff dimension of the boundary of the immediate basin of infinity of McMullen maps fp(z) = z Q + p/z, where Q ≥ 3 and p is small. This gives a lower bound of the Hausdorff dimension of the Julia sets of McMullen maps in the special cases.

متن کامل

The Hausdorff dimension of some snowflake-like recursive constructions

Fractal subsets of Rn with highly regular structure are often constructed as a limit of a recursive procedure based on contractive maps. The Hausdorff dimension of recursively constructed fractals is relatively easy to find when the contractive maps associated with each recursive step satisfy the Open Set Condition (OSC). We present a class of random recursive constructions which resemble snowf...

متن کامل

Bi - Invariant Sets and Measureshave Integer Hausdorff

Let A; B be two diagonal endomorphisms of the d-dimensional torus with corresponding eigenvalues relatively prime. We show that for any A-invariant ergodic measure , there exists a projection onto a torus T r of dimension r dim , that maps-almost every B-orbit to a uniformly distributed sequence in T r. As a corollary we obtain that the Hausdorr dimension of any bi-invariant measure, as well as...

متن کامل

On ”thermodynamics” of Rational Maps I. Negative Spectrum

We study the pressure spectrum P (t) of the maximal measure for arbitrary rational maps. We also consider its modified version P̃ (t) which is defined by means of the variational principle with respect to non-atomic invariant measures. It is shown that for negative values of t, the modified spectrum has all major features of the hyperbolic case (analyticity, the existence of a spectral gap for t...

متن کامل

The Transfinite Hausdorff Dimension

Making an extensive use of small transfinite topological dimension trind, we ascribe to every metric space X an ordinal number (or −1 or Ω) tHD(X), and we call it the transfinite Hausdorff dimension of X. This ordinal number shares many common features with Hausdorff dimension. It is monotone with respect to subspaces, it is invariant under bi-Lipschitz maps (but in general not under homeomorph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002